[papers] local interpretable model-agnostic explanations, weak-to-strong trustworthiness, ...
Also: diverse red teaming with auto-generated rewards and multi-step RL, provable uncertainty decomposition via higher-order calibration
Generalizing Trust: Weak-to-Strong Trustworthiness in Language Models
“we study this question by examining if a stronger model can inherit trustworthiness properties when fine-tuned on a weaker model's outputs, a process we term weak-to-strong trustworthiness generalization. To address this, we introduce two foundational training strategies: 1) Weak Trustworthiness Finetuning (Weak TFT), which leverages trustworthiness regularization during the fine-tuning of the weak model, and 2) Weak and Weak-to-Strong Trustworthiness Finetuning (Weak+WTS TFT), which extends regularization to both weak and strong models. Our experimental evaluation on real-world datasets reveals that while some trustworthiness properties, such as fairness, adversarial, and OOD robustness, show significant improvement in transfer when both models were regularized, others like privacy do not exhibit signs of weak-to-strong trustworthiness. As the first study to explore trustworthiness generalization via weak-to-strong generalization, our work provides valuable insights into the potential and limitations of weak-to-strong generalization.”
Diverse and Effective Red Teaming with Auto-generated Rewards and Multi-step Reinforcement Learning
“we provide methods that enable automated red teaming to generate a large number of diverse and successful attacks. Our approach decomposes the task into two steps: (1) automated methods for generating diverse attack goals and (2) generating effective attacks for those goals. While we provide multiple straightforward methods for generating diverse goals, our key contributions are to train an RL attacker that both follows those goals and generates diverse attacks for those goals. First, we demonstrate that it is easy to use a large language model (LLM) to generate diverse attacker goals with per-goal prompts and rewards, including rule-based rewards (RBRs) to grade whether the attacks are successful for the particular goal. Second, we demonstrate how training the attacker model with multi-step RL, where the model is rewarded for generating attacks that are different from past attempts further increases diversity while remaining effective. We use our approach to generate both prompt injection attacks and prompts that elicit unsafe responses. In both cases, we find that our approach is able to generate highly-effective and considerably more diverse attacks than past general red-teaming approaches.”
Bridging Interpretability and Robustness Using LIME-Guided Model Refinement
“we propose a novel framework that leverages Local Interpretable Model-Agnostic Explanations (LIME) to systematically enhance model robustness. By identifying and mitigating the influence of irrelevant or misleading features, our approach iteratively refines the model, penalizing reliance on these features during training. Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.”
Provable Uncertainty Decomposition via Higher-Order Calibration
“We give a principled method for decomposing the predictive uncertainty of a model into aleatoric and epistemic components with explicit semantics relating them to the real-world data distribution. While many works in the literature have proposed such decompositions, they lack the type of formal guarantees we provide. Our method is based on the new notion of higher-order calibration, which generalizes ordinary calibration to the setting of higher-order predictors that predict mixtures over label distributions at every point. We show how to measure as well as achieve higher-order calibration using access to k-snapshots, namely examples where each point has k independent conditional labels. Under higher-order calibration, the estimated aleatoric uncertainty at a point is guaranteed to match the real-world aleatoric uncertainty averaged over all points where the prediction is made. To our knowledge, this is the first formal guarantee of this type that places no assumptions whatsoever on the real-world data distribution. Importantly, higher-order calibration is also applicable to existing higher-order predictors such as Bayesian and ensemble models and provides a natural evaluation metric for such models.”
Full list: https://tinyurl.com/ai-safety-papers
